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1. Introduction

This note examines the duality theorem of linear programming

- Wn the context of a general algebraic setting. It is well known that, when

,*. •he constants and variables of primal and dual programs are real numbers

4 "rjor any ordered field), then (i) any value of the function to be maximized

does not exceed any value of the function to be minimized; and (ii) max =

min. Property (i) is a triviality, and property (ii) depends on the hyper-

plane separation theorem [ 3 ], the simplex method [ 2 ] or some other

argument [4 ]. All of the arguments used to prove (ii), however', seem

to depend on the properties of a field. The proof of (i), however, does

Snot; in fact, its triviality will persist in the abstract setting described

C~.J below in Section 2. We then formulate some questions, which it is the

- main purpose of this note to advertise. That these questions have some

interest will be illustrated in Section 3, where the duality theorem will

be shown to hold in some unusual surroundings.

* This research was supported in part by the Office of Naval Research under Contract No. Norn 3775(00).
NR 047040.



2. Abstract Formulation of Linear Programming Duality

We shall be concerned only with that portion of the duality

theorem which considers properties (i) and (ii) mentioned in the

introduction.

We assume that we deal with a set S which contains all the con-

stants and all possible values of our variables. In addition, S admits the

operations of addition (under which S is a commutative semi-group);

multiplication (under which S is a semi-group); and multiplication is

distributive with respect to addition. Furthermore, S is partially ordered

under a relation ,<" satisfying a < b implies x + a < x + b for all

x ( S. Finally, S admits a subset P CS such that a < b, x C P implies

xa < xb and ax< bx.

We now formulate two dual linear programs; A = (aij) is an m

by n matrix; b = (bit .... b bi) is a vector with m components;

c = (cI, ... PC n) is a vector with n components; all entries in S.

Problem 1: Choose n elements xI ..... xn of S so that

(Z. ) Z a.. x. < b. (i= .... ,m)
Ij 3 J= i

(2.2) x. c P (j=l,... n)

in order to maximize

(2.3) Z c. x..3 J
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The meaning of (Z. 3) is that we seek elements x, .... , xn

which satisfy (2. 1) and (2. 2) such that, if xi .... xn are any ele-

ments satisfying (2. 1) and (2. 2), we have

(2.4) "- c.x. < 1: c.X.0

Problem 2: Choose m elements y .... YM satisfying

(2.5) i Yiai.j > c. (j =I....n)
i

(2.6) Yi ( P (i j 1 . ... m)

in order to minimize

(Z. 7) Z Yib.
i

Remarks analogous to (Z. 4) explain the meaning to be at-

tached to (2. 7).

Before proving property (i), let us note that

a. < b. i= 1, .... k

(2. 8)

implies Z a. < 1b.
i 1 1

To prove (2. 8), it is clearly sufficient, by induction, to

prove it in the case k 2. But a, b, implies = + =a b +a

"Also, a 2. b. implies b, + a. b, + b,. Hence a, + a,< b, + bZ,

by the transitivity of partial ordering.

To prove property (i), let x 1 , ... xn satisfy (2. 1) and1n
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(2.2), y,''"y satisfy (Z.5) and (2.6), and one seen that the

usual proof applies. For, consider

(2.9) L 1 y a.x = ij x y.a..x..
j i i j

The right-hand side of (Z. 9) is

E" Yi (.Z a ij x"

i 3

Since Z a..x. < bi, we have

Yi 2; a..jx. < Yi bi,

* 133= 1
3

since Yi c P, and

L Yi (Z' ajx .)= < E' Yibi
i j J

by (2. 8). Similarly, the left side of (2.9) is

E (E Yai) x. -> 2 c.x..
j i i j j

By the transitivity of partial ordering,

E c.x. < y ibi,

3 1

which is property (i).

We now pose the following problems:

A. Find all (some) sets S satisfying the postulates such

that, if (2. 1), (2. 2), (2. 5), (2. 6) have solutions, then the maximum

of (2. 3) and the minimum of (2. 7) exist and are equal - i. e., duality

holds.
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Two examples of such sets. S will be given in the next

section.

B. If S is a set satisfying the postulates, for which

duality fails, find all matrices A with the property: if bi ... bm

and c1I...c are taken so that (2. 1), (2.2), (2.5) and (2.6) have

solutions, then dualfty holds for this matrix A.

As an example of problem B, let S be the set of integers,

P the nonnegative integers, multiplication, addition and "<" have

the usual meanings. Then duality does not hold in general. The

class of matrices A for which it does hold are the totally unimodular

matrices [I], [5 1.

3. Examples of Sets S For Which von Neumann Duality Holds

Example 1: Let U be a set, S any algebra of subsets of S

(denote the complement of a by a, interpret multiplication and

addition as intersection and union respectively, "<" means "a',

and P = S).

Theorem 3. 1: In Example 1, duality holds.

Proof: Observe that (2. 1) and (2.2) always have solutions;

trivially, we can set x. * for every j. Also, (2. 5) and (Z. 6) have3

solutions if and only if • a.. > c. for every j. which we shall
SIt i= s

assume. It is now straightforward to show that
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xj= n I(ai + bi) ,.,n

and

y E c(bi +a.. r (ak + bak.)) (if I .. ,m)
1 Ji ~I k kj kj).3

verify (2. 1), (2.2), (2. 5), (2. 6) and the equality of (2. 3) and (2. 7).

Example 2: Let S be the set of positive fractions. We

shall say that a/b if (b/a) is an integer. Let multiplication in S

be ordinary multiplication, addition in S be (g. c. d.), "< " mean

6t I", P = S.

Example 3: Let S be the set of all integers. Multiplication

in S is ordinary addition, addition in S is min (i. e., a + b = min

(a, b) ), "< " in S is the ordinary inequality, P = S.

Theorem 3.2: In Examples 2 and 3, duality holds.

Proof: We first remark that, by considering the exponents

of each prime number present in each fraction, we see that duality

for Example 2 will follow from Example 3, which we now treat.

Clearly (2. 1), (2. 2), (2. S) and (2. 6) have solutions. In

Problem 1, we seek {xj) in order to maximize

(3.3) mrin {c+xj)
-j

where

(3.4) min {aij+ xj} < bi if l,...,m.

Let J(i) beanymappingof {l,...,m} into {l,...,n),
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and let and letf k 4 j (i) for any i

( .)min (b i - a ik) over all i such that k = j (i

Clearly, {xk} satisfy (3.4), and (3.3) becomes

"0 if k4 j (i) for any i
min

k (min (ck+ bi - aik), over all i such that k= j (i)}.

Another way of stating this value of (Z. 3) is as follows: the

mapping j (i) picks out cerLain entries in the matrix (c. + b. - a..),
3 1 2

and (3. 3) is the least of those entries. In particular, we may select

a mapping j (i) so that

c~iJ + bi -aiiJ = max c. +b. - a.., (i1=I.....m).
i(i) i ij(i) j j ij

Thus, we can obtain a value for (3. 3) which is the minimum of the row

maxima of (c + bi - aij).

For Problem Z,

y = max {c. - a ij} satisfies (2.5) and (2. 6), andYi

(Z. 7) becomes min max {bi + c. - a..}. This is the same as the
i 1 3 13

solution we found for Problem 1, proving the theorem.



References

1. Berge, C. , "Thgorie des Graphes et de see Applications".
Dunod, Paris, 1958.

2. Dantzig, G. B., "Inductive Proof of the Simplex Method",
IBM Journal of Research and Development, Vol. 4 (1960).
pp. 505-506.

3. Gale, D.. H. W. Kuhn and A. W. Tucker, "Linear Program-
ming and the Theory of Games", Chapter XIX, pp. 317-329
of "Activity Analysis of Production and Allocation", Cowles
Commission. Monograph No. 13, edited by T. C. Koopmans,
Wiley, New York, 1951.

4. Goldman, A. J. and A. W. Tucker, "Theory of Linear Pro-
gramming", Paper 4 of "Linear Inequalities and Related
Systems", pp. 53-98, Annals of Mathematics Studies No. 38,
edited by H. W. Kuhn and A. W. Tucker, Princeton, 1956.

5. Hoffman, A. J. and J. B. Kruskal, "Integral Boundary Points
of Convex Polyhedra", Paper 13 of "Linear Inequalities and
Related Systems", pp. 223-246, Annals of Mathematics Studies
No. 38, edited by H. W. Kuhn and A. W. Tucker, Princeton,
1956.


